Studies on Pt–S bonds. Competition of chelating methylsulfanyl- or methylsulfinyl-acetate, -benzoate and -phenolate for $Pt^{II}(H_2NCH_2CH_2NH_2)$

Alessandro Pasini* and Maurizio Moroni

Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Universita' di Milano and CNR Centre, Via Venezian 21, 20133 Milano, Italy DALTON

The reactions of $[Pt(en)(L-S, O)]^+$ (en = ethane-1,2-diamine) with L', where both L and L' are the anionic chelating ligands methylsulfanylacetate, 2-(methylsulfanyl)benzoate, 2-(methylsulfanyl)phenolate and their methylsulfinyl analogues, have been studied by ¹H NMR spectroscopy in D₂O solutions at 40 °C. Thioethers bind more strongly than sulfoxides to Pt(en) and within each series the order of affinity towards Pt is $^-O_{C}G_{H_4}SMe > ^-O_{2}CCH_2SMe > ^-O_{2}CC_{6}H_4SMe$ and $^-OC_{6}H_4S(O)Me > ^-O_{2}CCH_2S(O)Me > ^-O_{2}CC_{6}H_4S(O)Me$. The first step of the reactions is substitution of the Pt–O bond of L by the Pt–S bond of L' to give [Pt(en)(L-S)(L'-S)], with both ligands monodentate, S-co-ordinated, followed by closure of the chelate ring of L', to give $[Pt(en)(L'-S, O)]^+$, which occurs by displacement of the Pt–S bond of L by the oxygen atom of L'. The disubstituted species $[Pt(en)(O_2CCH_2SMe)_2]$, $[Pt(en)(O_2CC_6H_4SMe)_2]$ and $[Pt(en)(O_2CCH_2SMe)_{O}C_6H_4S(O)Me]$ are stable at 40 °C and present at the end of the reactions in equilibrium with the reactants and the products. Only the former, however, could be isolated as a pure compound.

The interaction of the anticancer drug cisplatin cis-[PtCl₂-(NH₃)₂] or of its analogues of general formula *cis*-[Pt(am)₂X₂] (am = an amine or $\frac{1}{2}$ chelating diamine, X = a leaving ligand) with nucleobases and DNA has been the subject of a vast number of investigations because the cytotoxic activity of these platinum complexes is believed to arise from their binding to DNA.¹⁻⁵ However, once the platinum complex has been injected into the body it can react with any nucleophilic centre, of particular biomedical relevance being the interaction of the *cis*-Pt(am)₂ moiety with the sulfur centres of biomolecules.⁶ Thus platinum-methionine complexes ^{7,8} have been found as metabolites of platinum drugs, the toxicity of cisplatin may be due to its binding to thiol-rich proteins,⁹ intracellular glutathione (γ -glutamylcysteinylglycine) is responsible for inactivation,¹⁰ cell protection and resistance,¹¹ while preinjection of glutathione results in a protective action against organ-specific toxicity¹² and thiocarbamates have been proposed as rescue agents towards acute cisplatin toxicity.¹³ According to recent reports,¹⁴ even the anticancer activity of cisplatin may be due, at least in part, to the inhibition of DNA polymerase-a through the binding of Pt to the sulfur centres of the enzyme. Finally some cisplatin analogues have been proposed, in which the cis-Pt(am)₂ moiety is bound to sulfoxides¹⁵⁻¹⁷ or thioethers^{17,18} as the leaving groups. In fact the Pt–S bonds of these ligands are relatively inert towards water or chloride,^{16,17,19} but in some instances they may be easily substituted by guanine, $^{6,16,17,19\mathchar`embed{substituted}}$ a model reaction of platinum binding to DNA.

It therefore appears that many biological properties of cisplatin analogues depend on the stability and reactivity of the various Pt–S bonds formed *in vivo*. Consequently a knowledge of the factors governing the competition between various sulfur ligands for the *cis*-Pt(am)₂ moiety may increase our understanding of the *in vivo* fate of platinum drugs and help in designing analogues possessing improved therapeutic indices as well as potential rescue agents. As a contribution to this, we report here the results of a study on the reactions of complexes **1–6**, [Pt(en)(L-*S*, *O*)]⁺ (en = ethane-1,2-diamine), with L', where both L and L' are a series of potentially chelating ligands in which a sulfur atom of a sulfanyl (thioether) or sulfinyl (sulfoxide) group is linked to an oxygen atom of either a carboxylate or phenolate anion through a methylene or phenylene group.

The moderate cytotoxicity of some of these complexes, as well as their reactivity towards Cl⁻ or GMP (guanosine 5'-monophosphate dianion) have been reported.^{16,17} Briefly, while methylsulfinylacetate and 2-(methylsulfinyl)benzoate are completely substituted by either Cl⁻ or GMP, the sulfoxide complex **6** reacts only with the nucleobase. The sulfanyl derivatives are less reactive: only the carboxylato group of **3** is replaced by chloride, yielding the monochloro derivative [PtCl(en)(O₂C-C₆H₄SMe-2)]. The dianion GMP, which completely displaces 2-(methylsulfanyl)benzoate from **3**, gives, with **1**, a monosubstitution product with S-co-ordinated methylsulfanylacetate. Compound **5** is inert towards these reagents. All these complexes are stable in aqueous solutions.^{16,17}

Experimental

All chemicals were reagent grade. The preparation of the proligands and complexes **1–6** has been reported elsewhere.^{16,17} The complex [PtCl(dien)]Cl (dien = diethylenetriamine) was obtained according to a recently published method.²²

Preparations

(Ethane-1,2-diamine)bis(methylsulfanylacetato-*S*)platinum(II) 7. This compound was obtained by heating at 40 °C for 1 h an aqueous solution of equimolar amounts of [Pt(en)-(O_2 CCH₂SMe)]NO₃ **1** and methylsulfanylacetic acid (2.46 mmol, 1.039 and 0.2611 g respectively in 20 cm³) together with KOH (24.6 cm³, 0.1 mol dm⁻³). The solution was evaporated to dryness under reduced pressure and the residue extracted twice with ethanol-chloroform (3:1 v/v, 50 cm³), from which the compound was obtained as a white solid by addition of diethyl ether. Yield 0.8585 g, 75% (Found: C, 20.6; H, 4.0; N, 6.1. C₈H₁₈N₂O₄PtS₂ requires C, 20.6; H, 3.9; N, 6.0%). IR (cm⁻¹, KBr pellets): 1586, 1379 (ionic carboxylate) *cf.* K(O₂CCH₂SMe) 1586, 1400. For ¹H NMR see Table 1. ¹⁹⁵Pt NMR (D₂O solution): δ -3720 *vs.* [PtCl₆]²⁻ [*cf.* ref. 8(*a*)].

(Diethylenetriamine)(methylsulfanylacetato-S)platinum(II)

chloride. A solution of [Pt(dien)Cl]Cl (0.2082 g, 0.484 mmol) and methylsulfanylacetic acid (0.0598 g) (molar ratio 1:1) in water (10 cm³) was treated with LiOH (0.0134 g) and heated at 50 °C for 5 h. The filtered solution was evaporated to dryness *in vacuo*, and the residue was dissolved in methanol (10 cm³) and stored at 5 °C overnight, giving 0.1658 g (67%) of a white precipitate of the monohydrate (Found: C, 18.4; H, 4.5; N, 9.2. C₇H₂₀ClN₃O₃PtS requires C, 18.4; H, 4.4; N, 9.2%). NMR (D₂O solution): ¹H (40 °C), δ 2.75 (*J*_{PtH} 42, CH₃S), 2.8–3.5 (CH₂ of dien) and 3.70 (*J*_{PtH} 37 Hz, CH₂S); ¹⁹⁵Pt, δ –3376 *vs.* [PtCl₆]²⁻. IR (cm⁻¹, KBr pellets): 1605 and 1371. FAB mass spectrum (glycerol mull): *m*/*z* = 403, [Pt(dien)(O₂CCH₂SMe)]⁺.

Reactivity studies

Stock D_2O solutions of known concentration of the potassium salts of the pro-ligands, to be used in these studies, were prepared by titration of the acids with 0.1 mol dm⁻³ aqueous KOH. After evaporation to dryness under reduced pressure, the residues were dissolved in known amounts of D_2O .

Reactions (1)–(36) were performed directly in NMR tubes. Weighed amounts of the complexes of L were treated with appropriate volumes of the stock D_2O solutions of the potassium salts of L'. Deuterium oxide was then added to give a final concentration 2×10^{-2} mol dm⁻³ of each reagent. The pH* (the pH-meter reading uncorrected for D_2O) was in all cases around 6.5 and remained roughly constant (±0.1) during the course of the reactions. These were performed at 40 ± 1 °C and their time course was monitored by recording ¹H NMR spectra at the same temperature (either Bruker WP80 or AC200 instrument). The chemical shifts of the reactants, intermediates and products are referred to external SiMe₄ and are reported in Table 1. The t_1 values in Table 2 refer to the disappearance of the reagents and were calculated from the integrated intensities of their resonances.

Equilibria (37) and (38) were studied by recording the ¹H NMR spectra at various temperatures (5–85 °C) of 10^{-2} mol dm⁻³ D₂O solutions of complexes **1** and **3**, containing known amounts of K(O₂CCH₂SMe) and K(O₂CC₆H₄SMe-2) respectively. Dissociation constants were calculated from the integrated intensities of the signals.

Reaction between [Pt(dien)(O₂CCH₂SMe)]Cl and GMP. The platinum complex (0.0108 g) was mixed with GMP (0.0109 g) (disodium salt, dihydrate) directly in the NMR tube and D₂O (1.0 cm³) was added, to give a final concentration of 2.46×10^{-2} mol dm⁻³ of each reagent. The pH* was 6.8. The tube was thermostatted at 40 ± 1 °C and ¹H NMR spectra were recorded, at intervals, at the same temperature. The spectrum was unchanged for 1 d, when the peak of $^{-}O_2$ CCH₂SMe started to grow, together with a peak at δ 8.99 (J_{PtH} 23 Hz) attributed to

 H^8 of GMP co-ordinated to Pt at the N⁷ position. After 30 d only the resonances of [Pt(dien)(GMP)] and of free $^-O_2CCH_2SMe$ were observed; t_4 8 d.

Results and Discussion

The time course of the 36 cross-competition reactions (i)

$$[Pt(en)(L-S,O)] + L' \Longrightarrow [Pt(en)(L'-S,O)] + L \quad (i)$$

between complexes **1–6** and the six anionic ligands has been monitored by ¹H NMR spectroscopy at 40 °C with equimolar concentrations (2×10^{-2} mol dm⁻³ D₂O solutions) of the complexes and L'. The relevant ¹H NMR data are in Table 1. The nature of the products (characterized by comparison of their ¹H NMR spectra with those of authentic samples ¹⁷) and the t_i values (corresponding to the disappearance of the reactants) are in Table 2. With few exceptions, see below, the product of the reactions is [Pt(en)(L'-*S*, *O*)]⁺, where the chelated L' has substituted L. Obviously, in these cases, when the direct reaction went to completion the reverse reaction was not observed.

Most reactions are rather fast (t_2 ranging from 2 to 30 min), except for (20) [substitution of chelate $^{-}O_2CC_6H_4S(O)Me$ -2 by $^{-}O_2CCH_2S(O)Me$, $t_2 = 5$ d] and (33) [substitution of $^{-}OC_6H_4$ -S(O)Me-2 by $^{-}O_2CC_6H_4SMe$ -2, $t_2 = 7$ d]. The order of affinity of the various pro-ligands towards the Pt(en) moiety is $^{-}OC_6H_4SMe > ^{-}O_2CCH_2SMe > ^{-}O_2CC_6H_4SMe > ^{-}OC_6H_4$ - $S(O)Me > ^{-}O_2CCH_2S(O)Me > ^{-}O_2CC_6H_4SMe > ^{-}OC_6H_4$ - $S(O)Me > ^{-}O_2CCH_2S(O)Me > ^{-}O_2CC_6H_4S(O)Me$, while for the donor atoms S > O, sulfanyl > sulfinyl and phenolato > carboxylato.

The NMR spectra, recorded during the time course of the reactions, show, in most cases, the presence of some peaks attributable to a disubstituted intermediate species of the type [Pt(en)(L-*S*)(L'-*S*)], where both L and L' are monodentate, S-co-ordinated (Pt–H coupling of the resonances of the MeS groups of both ligands, see Table 1). These species appear in the first spectra (about 2 min after mixing the reagents) their highest concentration (about 0.5×10^{-2} mol dm⁻³) being reached at about two thirds of t_2 and, with few exceptions, see below, are no longer visible at the end of the reaction.

A likely mechanism of these reactions is depicted in Scheme 1 for the case of reaction (13) between complex **3** and $^{-}O_2CCH_2SMe$ which yields **1**. The spectrum recorded 2 min after mixing the reagents, shows, besides the peaks due to **3** and $^{-}O_2CCH_2SMe$, three peaks at δ 2.95 (J_{PtH} 45), 3.05 (43) and 2.81 (45 Hz), in the ratio 4:3:3, which grow at the expense of those of **3**. Since these resonances are not due to **1** (see Table 1), they must be attributed to the CH₂ of en (four protons) and MeS of $^{-}O_2CC_6H_4SMe$ and $^{-}O_2CCH_2SMe$ (three protons each) of a new species **12**, with both $^{-}O_2CCH_2SMe$ and $^{-}O_2CC_6H_4SMe$ monodentate S-co-ordinated. After 10 min the peak due to MeS of $^{-}O_2CC_6H_4SMe$ (δ 2.66) starts to grow, Table 1 Proton NMR data for reactants, intermediates and products of reactions (1)-(36)^a

Compound	MeS		CH ₂ (en)	CH ₂ S
⁻ O ₂ CCH ₂ SMe	2.24			3.39
⁻ O ₂ CCH ₂ S(O)Me	2.94			3.75
⁻ O ₂ CC ₆ H ₄ SMe	2.66 ^{<i>b</i>}			
⁻ O ₂ CC _e H ₄ S(O)Me	3.08			
-OC _e H _a SMe	2.54			
⁻ OC ₆ H ₄ S(O)Me	2.97			
1	2.80 (49)		2.89 (45)	3.96 ^c
2	3.92 (25)		2.99 (44)	4.74 ^c
3	2.90 (45)		2.90 (45)	
4	3.86 (23)		3.02 (44)	
5	3.00 (50)		3.00 (42)	
6	3.94 (24)		3.07 (43)	
7 [Pt(en)(O ₂ CCH ₂ SMe) ₂]	O ₂ CCH ₂ SMe	2.81 (44)	3.08 (42)	3.95 (40)
[in reaction (1)]				
8 [Pt(en)(O_2CCH_2SMe)(OC_6H_4SMe)]	O ₂ CCH ₂ SMe	2.78 (44)	2.97 (44)	С
[in reaction (5)]	OC ₆ H ₄ SMe	2.91 (50)		
9 [Pt(en)(O ₂ CCH ₂ SMe){OC ₆ H ₄ S(O)Me}]	O ₂ CCH ₂ SMe	2.78 (43)	3.05 (43)	С
[reactions (6) and (31)]	$OC_6H_4S(O)Me$	3.92 (24)		
$10 [Pt(en)(O_2CCH_2SMe){O_2CCH_2S(O)Me}]$	O ₂ CCH ₂ SMe	2.60 (45)	3.03 (43)	С
[in reaction (7)]	O ₂ CCH ₂ S(O)Me	3.60 (29)		
11 [Pt(en){ $O_2CCH_2S(O)Me$ }($O_2CC_6H_4SMe$)]	O2CCH2S(O)Me	3.81 (24)	3.11 (44)	С
[in reaction (9)]	O ₂ CC ₆ H ₄ SMe	2.86 (46)		
12 [Pt(en)(O ₂ CCH ₂ SMe)(O ₂ CC ₆ H ₄ SMe)]	O ₂ CCH ₂ SMe	2.81 (45)	2.95 (45)	3.92 (40)
[in reaction (13)]	O ₂ CC ₆ H ₄ SMe	3.05 (43)		
$13 \left[Pt(en)(O_2CC_6H_4SMe)_2 \right]$	O2CC6H4SMe	2.83 (40)	2.96 (44)	
[in reaction (15)]				
$14 [Pt(en) \{O_2CC_6H_4S(O)Me\}(O_2CCH_2SMe)]$	O ₂ CC ₆ H ₄ S(O)Me	3.85 (24)	3.06 (44)	С
[in reaction (19)]	O ₂ CCH ₂ SMe	2.78 (45)		
$15 [Pt(en) \{O_2CC_6H_4S(O)Me\}(O_2CC_6H_4SMe)]$	O ₂ CC ₆ H ₄ S(O)Me	3.84 (25)	2.92 (44)	
[in reaction (21)]	O2CC6H4SMe	2.85 (45)		
$16 [Pt(en) \{OC_6H_4S(O)Me\}(OC_6H_4SMe)]$	OC ₆ H ₄ SMe	2.87 (48)	3.06 (43)	
[in reaction (35)]	OC ₆ H ₄ S(O)Me	3.93 (24)		

^{*a*} In D₂O solutions at 40 °C, δ in ppm *vs.* external SiMe₄, *J*_{PtH} in Hz. The values for the pro-ligands and compounds **1–6** are from refs. 16 and 17. ^{*b*} The value of δ 2.41 in ref. 17 is a printing error. ^{*c*} The resonances of the CH₂ groups of co-ordinated $^{-}O_2CCH_2SMe$ and $^{-}O_2CCH_2S(O)Me$ are seldom visible because of H–D exchange of these groups.¹⁶

together with those of the substitution product **1**. At t_1 (30 min) the intensities of the signals of species **12** are reduced and are no longer visible at the end of the reaction, when only the peaks of **1** and of free $^-O_2CC_6H_4SMe$ are observed.

Some disubstituted species of the type [Pt(en)(L-*S*)(L'-*S*)], *i.e.* **7** [L = L' = $^{-}O_2CCH_2SMe$, reaction (1)], **9** [L = $^{-}O_2CCH_2-SMe$, L' = $^{-}OC_6H_4S(O)Me$, reaction (6); or L = $^{-}OC_6H_4-S(O)Me$, L' = $^{-}O_2CCH_2SMe$, reaction (31)] and **13** [L = L' = $^{-}O_2CC_6H_4SMe$, reaction (15)] are rather stable and are found at the end of the reactions in equilibrium with both [Pt(en)-(L-*S*, *O*)]⁺ and [Pt(en)(L'-*S*, *O*)]⁺. In particular at the end of reaction (1) the spectrum shows that **7** is practically the only species present, with only traces of **1** and free $^{-}O_2CCH_2SMe$. Complex **7** could be isolated under preparative conditions and characterized (see Experimental section). Attempts to isolate other disubstituted species as pure compounds failed, since they tend to give rise to the chelate [Pt(en)(L-*S*, *O*)]⁺ [reactions (6) and (15)] or [Pt(en)(L'-*S*, *O*)]⁺ [reaction (31)] upon crystallization.

No intermediate species was observed during the time course of reactions (11), (12), (17), (20), (23), (24) and (33). While some of these are probably too fast ($t_{4} \approx 2$ min) for such an

observation, for (20) $[L = {}^{-}O_2CC_6H_4S(O)Me$ and $L' = {}^{-}O_2-CCH_2S(O)Me$, t_2 5 d] and (33) $[L = {}^{-}OC_6H_4S(O)Me$, $L' = {}^{-}O_2-CC_6H_4SMe$, t_2 7 d] such a failure must be due to an intrinsic instability and/or reactivity of the intermediates.

In the mechanism depicted in Scheme 1 the first step is substitution of the Pt–O bond of L-*S*, *O* by the Pt–S bond of L'. This will occur only if the balance between the stability of the chelate ring of L and the strength of the new Pt–S bond is favourable. Thus complex **5** is unreactive, while the $^{-}O_{2}CC_{6}H_{4}S(O)Me$ chelate ring is easily broken and the sulfanyl groups are more 'aggressive' than the sulfinyl moieties.

The following step is, in a sense, the reverse process, in that a new Pt-O bond (of L') is formed at the expense of a bond between Pt and the soft S atom of L. This process again depends on two factors. First the relative strength and/or lability of the two Pt-S bonds of the intermediate: the platinum-sulfinyl bonds are more easily replaced by the anionic oxygen atom than are the platinum-thioether bonds. A second point is the formation of the chelate ring of L'. The thermodynamics of this process is easy to evaluate in the cases of reactions (1) and (15), where L = L', which give to the relatively stable (at 40 °C) 7 and 13, respectively. At higher temperatures these compounds dissociate according to equilibria (37) and (38) [the reverse of reactions (1) and (15)], for which integration of the ¹H NMR peaks at various temperatures gave the following values (at 50 °C): [Pt(en)- $(O_2CCH_2SMe)_2$] \Longrightarrow 1 + $^-O_2CCH_2SMe$, $K_{\text{dis } 37} = 7.6 \pm 0.9$ 10^{-3} mol dm⁻³, $\Delta H = 46 \pm 4$ kJ mol⁻¹ and $\Delta S = 101 \pm 12$ J K⁻¹ mol⁻¹; [Pt(en)(O₂CC₆H₄SMe)₂] \implies **3** + ⁻O₂CC₆H₄SMe, $K_{\text{dis 38}} = 7.8 \pm 0.1 \ 10^{-2} \text{ mol dm}^{-3}, \ \Delta H = 31 \pm 1 \ \text{kJ} \ \text{mol}^{-1}$ and $\Delta S = 75 \pm 4$ J K⁻¹ mol⁻¹. These data, besides showing the different stabilities of the two chelate rings, clearly demonstrate the importance of chelate ring closure (the entropic

Table 2 Reaction numbering, t and products for the reactions $[Pt(en)(L-S, O)]^+ + L'^a$

L, compound	⁻ O ₂ CCH ₂ SMe	⁻ O ₂ CCH ₂ S(O)Me	⁻ O ₂ CC ₆ H ₄ SMe	⁻ O ₂ CC ₆ H ₄ S(O)Me	⁻ OC ₆ H ₄ SMe	⁻ OC ₆ H ₄ S(O)Me	
⁻ O ₂ CCH ₂ SMe	(1)	(2)	(3)	(4)	(5)	(6)	
1	20 min	n.r.	n.r.	n.r.	3 min	12 h	
	$7 + \text{traces of } 1^{b}$				5	$1 + 6 + 9^{c}$	
⁻ O ₂ CCH ₂ S(O)Me	(7)	(8)	(9)	(10)	$(11)^{d}$	$(12)^{d}$	
2	8 min	n.r.	15 min	n.r.	<2 min	<2 min	
	1		3		5	6	
⁻ O ₂ CC ₆ H ₄ SMe	(13)	(14)	(15)	(16)	$(17)^{d}$	(18)	
3	30 min	n.r.	10 h	n.r.	5 min	n.r.	
	1		$3 + 13^{e}$		5		
⁻ O ₂ CC ₆ H ₄ S(O)Me	(19)	$(20)^{d}$	(21)	(22)	$(23)^{d}$	$(24)^{d}$	
4	15 min	5 d	10 min	n.r.	<2 min	<2 min	
	1	2	3		5	6	
[–] OC ₆ H ₄ SMe	(25)	(26)	(27)	(28)	(29)	(30)	
5	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	
⁻ OC ₆ H ₄ S(O)Me	(31)	(32)	$(33)^{d}$	(34)	(35)	(36)	
6	3 h	n.r.	7 d	n.r.	15 min	n.r.	
	$1 + 6 + 9^c$		3		5		

L', reaction, t, products

^a n.r. = No reaction. For conditions see text. ^b See text. ^c In the ratio 1:0.1:1. ^d No intermediate species was observed during this reaction. ^e In the ratio 1:0.26.

factor) in this step of the reactions. Unfortunately no similar data could be obtained for the other cases with L = L' [*i.e.* reactions (8), (22), (29) and (36)], since we could detect traces of the disubstituted products only by performing the reactions with a very high excess (15-fold) of the pro-ligands, when integration of the NMR peaks was unreliable for any quantitative measurement.

In conclusion certain Pt-bound sulfur ligands can be substituted by other sulfur nucleophiles. In the cases discussed in this paper, formation of a S,O-chelate ring favours such substitution and we believe these results may form the basis of the design of effective rescue agents towards acute platinum toxicity.

A final point is worth discussing. The potential reversibility of Pt-S bonds in the presence of other sulfur ligands suggests that, in vivo, Pt can be transferred between various S-containing biomolecules, which can thus act as effective depot and/or transport systems for platinum drugs, as has been suggested.^{20,21} However, if such a transport/depot system is operative, the question then arises whether such Pt-S species can react with the target guanine base of DNA. This has been discussed in some cases.^{16,17,21,23} Thus GMP displaces only the carboxylato group in 1, yielding¹⁷ the monofunctional adduct $[Pt(en)(GMP-N^{\dagger})(O_2CCH_2SMe)]^-$, a compound similar to that obtained from reaction of GMP with acetylmethionine complexes of Pt(en).23 [In the case of the cis-Pt(NH3)2 analogue extensive decomposition was observed.^{21b}] In contrast to the stability of the Pt-S bond in these thioether complexes of Pt(en)(GMP), methionine is displaced²¹ by GMP from $[Pt(dien)(Hmet-S)]^{2+}$ (Hmet = methionine). We have therefore synthesized [Pt(dien)(O₂CCH₂SMe)]⁺ and found that also the platinum-thioether bond of this complex is substituted, slowly, by GMP (t, 7 d at 40 °C, see Experimental section). The reversibility of such a bond in the presence of nucleobases therefore depends on different factors which need further investigation, currently underway in our laboratory.

Acknowledgements

This work was supported by MURST (Ministero dell' Universita' e della Ricerca Scientifica e Tecnologica).

References

- 1 B. Lippert, Prog. Inorg. Chem., 1987, 37, 1.
- 2 W. I. Sundquist and S. J. Lippard, Coord. Chem. Rev., 1990, 100, 293.
- 3 S. L. Bruhn, J. H. Toney and S. J. Lippard, Prog. Inorg. Chem., 1990, 38. 477.
- 4 J. Reedijk, Chem. Commun., 1996, 801.
- 5 M. J. Bloemink and J. Reedijk, Met. Ions Biol. Syst., 1996, 32, 641
- 6 E. L. M. Lempers and J. Reedijk, Adv. Inorg. Chem., 1991, 37, 175.
- 7 C. M. Riley, L. A. Sternson, A. J. Repta and S. A. Slyter, Anal. Biochem., 1983, 130, 203.
- 8 R. E. Norman, J. D. Ranford and P. J. Sadler, Inorg. Chem., 1992, 31, 877; P. d. S. Murdoch, J. D. Ranford, P. J. Sadler and S. J. Berners-Price, Inorg. Chem., 1993, 32, 2249; K. J. Barnham, U. Frey, P. d. S. Murdoch, J. D. Ranford and P. J. Sadler, J. Am. Chem. Soc., 1994, 116, 11 175.
- 9 S. V. Pizzo, M. W. Swaim, P. A. Roche and S. L. Gonias, J. Inorg. Biochem., 1988, 33, 67; J. Bongers, J. U. Bell and D. E. Richardson, J. Inorg. Biochem., 1988, 34, 55.
- 10 E. Eastman and M. A. Barry, Biochemistry, 1987, 26, 3303.
- 11 S. J. Berners-Price and P. W. Kuchel, J. Inorg. Biochem., 1990, 38, 327.
- 12 M. Tedeschi, A. De Cesare, S. Oriana, P. Perego, A. Silva, P. Venturino and F. Zunino, Cancer Treat. Rev., 1991, 18, 253; F. Zunino, G. Pratesi, A. Micheloni, E. Cavalletti, F. Sala and O. Tofanetti, Chem.-Biol. Interact., 1989, 70, 89.
- 13 P. C. Dedon, R. Quaziand and F. R. Borch, in Biochemical Mechanism of Platinum Antitumor Drugs, eds. D. C. H. McBrien and T. F. Slater, IRL, Oxford, 1986, p. 199.
- 14 T. J. Kelley, S. Moghaddas, R. N. Bose and S. Basu, Cancer Biochem. Biophys., 1993, 13, 135; R. N. Bose, D. Li, M. Kennedy and S. Basu, J. Chem. Soc., Chem. Commun., 1995, 1731.
- 15 N. Farrell, J. Chem. Soc., Chem. Commun., 1982, 331; N. Farrell, D. M. Kiley, W. Schmidt and M. P. Hacker, Inorg. Chem., 1990, 29, 397; J. Landi, M. P. Hacker and N. Farrell, Inorg. Chim. Acta, 1992, 202 79
- 16 A. Pasini, G. D'Alfonso, C. Manzotti, M. Moret, S. Spinelli and M. Valsecchi, Inorg. Chem., 1994, 33, 4140.
- 17 A. Pasini, P. Perego, M. Balconi and M. Lupatini, J. Chem. Soc., Dalton Trans., 1995, 579. 18 S. Shamsuddin, S. Al-Baker, Z. H. Siddik and A. R. Khokhar,
- Inorg. Chim. Acta, 1996, 241, 101.
- 19 E. L. M. Lempers, M. J. Bloemink and J. Reedijk, Inorg. Chem., 1991, **30**, 201.

- 20 S. S. G. E. van Boom and J. Reedijk, J. Chem. Soc., Chem. Commun., 1993, 1397.
- 21 (a) K. J. Barnham, M. I. Djuran, P. d. S. Murdoch and P. J. Sadler, J. Chem. Soc., Chem. Commun., 1994, 721; (b) K. J. Barnham, M. I. Djuran, P. d. S. Murdoch, J. D. Ranford and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1995, 3721.
- 22 G. Annibale, M. Brandolisio and B. Pitteri, *Polyhedron*, 1995, 14, 451.
- 23 K. J. Barnham, Z. Guo and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1996, 2867.

Received 5th August 1996; Paper 6/05475G